High-Precision Capillary Tubes for Scientific & Industrial Applications

Photo caption: Glass Capillary Tubes available from Goodfellow

Coraopolis, PA ... October 17, 2013 ... Through their Ceramic and Glass Division, Goodfellow has introduced a new line of glass capillary tubes for use in specialized scientific and industrial applications. The tubes are available with inner diameters as small as 0.005mm and in a range of materials including soda lime glass, borosilicate glass, quartz, and sapphire. These materials can be sterilized, are inert, and are suitable for precision measuring.

Applications are varied and include use in liquid measurement, liquid transfer, flow restrictors, fiber optic components, laser technology, x-ray diffraction analysis, and thermocouple assemblies (often in sapphire).

Tube shapes can be matched to the application and include:
- Circular
- Rectangular
- Square
- Heavy wall (small inner diameter, but with thicker wall)
- Double bore
- Four bore
- Multibore

Goodfellow can also supply special shapes and sizes of tubes, as well as precision tubes in materials such as titanium, stainless steel, and nickel and its alloys.

For more information, contact a Goodfellow ceramic and glass specialist on +44 1480 424 888 or ceramic@goodfellow.com.

About …

Goodfellow is a leading supplier of metals, polymers, ceramics and other materials to meet the needs of science and industry worldwide. The company specializes in supplying small quantities (a few grammes to a few kilos) of metals and materials for research, prototype development and specialized manufacturing applications. Standard products can be found on-line in the comprehensive Goodfellow USA Catalog (www.goodfellowusa.com).

The Goodfellow Ceramic and Glass Division (www.goodfellow-ceramics.com) supplies a comprehensive range of ceramics and glasses to the research and industrial markets either as finished components to customer drawings or in an extensive range of semi-finished forms including sheets, rods and tubes for our customers to machine their own components.